登陆  
最新更新时间:2018/1/29 14:17:00  访问数量:6169
李劲风
个人简介

李劲风

1971年出生 男

博士,教授,博士生导师。

中国腐蚀电化学与测试方法专业委员会委员。

长期致力于新型铝合金及铝锂合金的基础理论研究以及金属材料的腐蚀与防护研究。先后主持并承担了国家自然科学基金、国家留学回国基金、国家JP配套、航天贮箱预研等项目。已在Corrosion Science、Materials Science & Engineering A、Journal of Alloys and Compounds、Materials Characterization、Trans Non-ferrous Met Soc China等国内外知名学术刊物及国际学术会议发表学术论文100多篇。

邮箱:lijinfeng@csu.edu.cn。 电话:13278861206

学历介绍:

1993年7月毕业于中南工业大学材料科学与工程系金属材料与工程专业,获工学学士学位;1993年9月~1996年5月在长沙矿冶研究院攻读硕士研究生,获有色金属冶金专业工学硕士学位;1996年9月~2000年7月在中南大学材料科学与工程学院攻读博士研究生,获材料学专业工学博士学位;2001年9月~2003年6月在浙江大学化学系从事博士后研究,进行金属材料的腐蚀与防护研究。2009年7月~2010年7月公派至美国俄亥俄州立大学 (The Ohio State University)进行访问学者研究。



科研方向:(1)新型高性能铝锂合金成分设计(航空航天用新型高强高韧铝锂合金);(2)铝合金及铝锂合金微合金化、微观组织与性能;(3)金属材料的腐蚀与防护;(4)新型2XXX系及7XXX系铝合金微观组织与性能。

近三年主持的主要科研项目:(1)超高强铝锂合金研制,国家配套项目,190万,在研。 (2)2195铝锂合金设计XXX值研究,XX运载火箭“关深”项目,96万,在研。 (3)2050、1460铝锂合金研制,XX运载火箭选材预研项目,60万,结题。 (4)2195铝锂合金热处理制度及机理研究,863项目(火箭选材预研项目),40万,结题。


学术成果
_________________________________________________________________________________________

近年代表性论文

已在Corrosion Science, MSEA, J. Alloy & Compound, Mater Characterization, Materials & Corrosion, Trans. Nonferrous Met Soc China等国际国内期刊发表论文100多篇。近期部分代表论文如下:

[45] Rui-hua Zhu, Qing Liu, Jin-feng Li*, Yong-lai Chen, Xu-hu Zhang, Zi-qiao Zheng. Flow curve correction and processing map of 2050 Al-Li alloy. Trans. Nonferrous Met. Soc. China. 2018, 28(3):

[44] Jin-feng Li, Dan-yang Liu, Hong Ning, Cheng Liu, Peng-cheng Ma Yong-lai Chen, Xu-hu Zhang,. Experimental quantification of “hardenability” of 2195 and 2050 Al-Li alloys by using cold-rolled sheets. Materials Characterization. 2018, 137: 180-188

[43] 潘波, 李睿, 李劲风*, 马鹏程, 陈永来, 张绪虎, 郑子樵. Ce微合金化对一种Al-Cu-Li系高强铝锂合金薄板组织及拉伸性能的影响. 中国有色金属学报. 2018, 28(1): 21-30

[42] 李劲风*, 陈永来, 张绪虎, 刘晴, 郑子樵, 姚勇, 王剑. 一种新型超高强铝锂合金板材的组织与力学性能. 稀有金属材料与工程. 2017, 46(12): 3715-3720

[41] 李劲风*, 陈永来, 张绪虎, 许秀芝, 郑子樵. 1460铝锂合金薄板力学性能与微观组织演化. 中南大学学报(自然科学版). 2017, 48(11): 2866-2872

[40] Yun-long Ma , Jin-feng Li*. Variation of aging precipitates and mechanical strength of Al-Cu-Li alloys caused by small addition of rare earth elements. Journal of Materials Engineering and Performance. 2017, 26(9): 4329-4339. DOI: 10.1007/s11665-017-2903-4

[39] 林小红, 李劲风*, 陈永来, 张绪虎, 许秀芝, 郑子樵. 时效温度对1460铝锂合金力学性能及微观组织的影响. 稀有金属. 2017, 41(12): 1293-1298. DOI: 10.13373/j.cnki.cjrm.XY16080030

[38] 马云龙, 李劲风, 刘观日,刘丹阳, 叶志豪, 汪洁霞, 郑子樵. 重固溶-不同温度T8再时效2195铝锂合金的力学性能与微观组织演化. 中国有色金属学报. 2017, 27(2): 234-242

[37] 李劲风*, 陈永来*, 张绪虎, 刘平礼. 非等温时效对一种铝锂合金力学性能与微观组织的影响. 稀有金属材料与工程. 2017, 46(1):183-188

[36] C. Cai, X.-Q. Liu, X. Tan, G.-D. Li, H. Wang, J.-M. Li and J.-F. Li. A Zr- and Cr(III)-containing conversion coating on Al alloy 2024-T3 and its self-repairing behavior. Materials and Corrosion. 2017, 68(3): 338-346 DOI: 10.1002/maco.201609067

[35] Jin-feng Li*, Zhi-hao Ye, Dan-yang Liu, Yong-lai Chen, Xu-hu Zhang, Xiu-zhi Xu, Zi-qiao Zheng. Influence of pre-deformation on aging precipitation behavior of three Al-Cu-Li alloys. Acta Metallurgica Sinica (English Letters). 2017, 30(2): 133-145 DOI: 10.1007/s40195-016-0519-6

[34] 刘丹阳, 李劲风*, 郑子樵, 陈永来, 张绪虎. Er微合金化对1441铝锂合金微观组织和力学性能的影响. 稀有金属. 2017, 41(7): 725-732. [DOI] 10.13373/j.cnki.cjrm.XY16040020

[33] Qing Liu, Rui-hua Zhu, Dan-yang Liu, Yang Xu, Jin-feng Li*, Yong-lai Chen*, Xu-hu Zhang, Zi-qiao Zheng. Correlation between artificial aging and intergranular corrosion sensitivity of a new Al-Cu-Li alloy sheet. Materials and Corrosion. 2017, 68(1): 65-76. DOI: 10.1002/maco.201609090

[32] 马云龙*, 黄诚, 李劲风, 刘丹阳, 叶志豪, 汪洁霞, 郑子樵. 2195铝锂合金重固溶-T8再时效的组织与力学性能. 材料热处理学报. 2016, 37(8):62-68

[31] 李劲风*, 陈永来, 张绪虎, 张健, 郑子樵. 一种新型超高强铝锂合金薄板的时效行为与微观组织. 宇航材料工艺. 2016, 46(5): 62-67

[30]
李劲风*, 刘丹阳, 郑子樵, 陈永来, 张绪虎. Er微合金化对2055铝锂合金微观组织及力学性能的影响. 金属学报. 2016, 52(7): 821-830

[29] Qing Liu, Rui-hua Zhu, Jin-feng Li*, Yong-lai Chen*, Xu-hu Zhang, Long Zhang, Ziqiao zheng. Microstructural evolution of a Mg, Ag and Zn micro-alloyed Al-Cu-Li alloy during homogenization. Trans. Nonferrous Met. Soc. China. 2016, 26(3): 607-619

[28] L. L. Song, J. F. Li*, et al. Corrosion resistance and self-repairing behaviour of a Cr(III)-contained conversion coating on AA2024-T3. Corrosion Engineering, Science and Technology. 2016, 51(4): 263-271 (DOI: 10.1179/1743278215Y.0000000053)

[27] J. F. Li*, N. Birbilis, et al. Intergranular corrosion of Zn-free and Zn micro-alloyed Al-xCu-yLi alloys. Corrosion Science. 2016,105:44-57

[26] 许龙, 姚希, 李劲风*, 蔡超. 2099铝锂合金晶间腐蚀行为与时效制度的相关性. 中国腐蚀与防护学报. 2014, 34(5): 419-425

[25] 李劲风*, 陈永来*, 张绪虎, 郑子樵. Cu、Li含量对Mg、Ag、Zn复合微合金化铝锂合金力学性能及微观组织的影响. 宇航材料工艺. 2015,45(2):24-28

[25] 张健, 朱瑞华, 李劲风*, 马云龙, 刘德博, 郑子樵. 时效前处理对新型Al-Cu-Li-X合金力学性能和微观组织的影响. 中国有色金属学报. 2015, 25(12):3300-3308

[24] Sheng XIANG, Dan-yang LIU, Rui-hua ZHU, Jin-feng LI*, Yong-lai CHEN*, Xu-hu ZHANG. Hot deformation behavior and microstructure evolution of 1460 Al-Li alloy during isothermal compression. Trans. Nonferrous Met. Soc. China. 2015, 25(12): 3855-3864

[23] Rui-hua Zhu, Qing Liu, Jin-feng Li*, Sheng Xiang, Yong-lai Chen, Xu-hu Zhang. Dynamic restoration mechanism and physically based constitutive model of 2050 Al-Li alloy during hot compression. Journal of Alloys and Compounds. 2015, 650:75-85

[22] LI Jin-feng*, LIU Ping-li, CHEN Yong-lai, ZHANG Xu-hu, ZHENG Zi-qiao. Mechanical Properties and Microstructures of Mg, Ag and Zn mult-microalloyed Al–(3.2~3.8)Cu-(1.0~1.4)Li alloys. Trans. Nonferrous Met. Soc. China. 2015, 25(7): 2103−2112

[21] Jin-feng Li*, Long Xu, Chao Cai, Yong-lai Chen, Xu-hu Zhang, Zi-qiao Zheng. Mechanical property and intergranular corrosion sensitivity of Zn-free and Zn micro-alloyed Al-2.7Cu-1.7Li-0.3Mg alloys. Metallurgical and Materials Transaction A. 2014, 45(12): 5736-5748

[20] F. L. Zeng, X. Tan, J. F. Li*, Z. Zhang. Corrosion inhibition of A3 steel by an imidazoline derivative in 2.0% NaCl solution. Corrosion Engineering, Science and Technology.2013,48(2): 108-115

[19] Chao-xing Li, Xing Tan, Jin-feng Li*, Chao Cai, Zi-qiao Zheng. Corrosion behavior of 1420 Al-Li alloy under MgCl2 drops in 33% relative humidity. Materials and Corrosion. 2014, 65(5): 476-484

[18] Jin-feng Li*, Xing Tan. Potential change and corrosion behavior of two Al-Mg-Si alloys with different Si content under MgCl2 drops in 33% relative humidity. Materials and Corrosion. 2014, 65(11): 1062-1072

[17] J. F. Li*, F. L. Zeng. Corrosion dependence of an Al-Mg-Si alloy under MgCl2 solution drop on initial concentration and humidity. Materials and Corrosion. 2013, 64(9):811-820

[16] J.F. Li*, B. Maier, G.S. Frankel. Corrosion of an Al-Mg-Si alloy under MgCl2 solution droplets. Corrosion Science, 2011, 53: 2142–2151

[15] J. F. Li*, et al. Simulation Study on Function Mechanism of Some Precipitates in Localized Corrosion of Al Alloy. Corrosion Science. 2007, 49: 2436~2449

[14] Jin-feng Li*, et al. Study on Function Mechanism Associated with T1 and T2 Precipitates during Localized Corrosion of Al-Cu-Li alloys. Journal of Alloys and Compounds. 2008, 460: 688~693

[13] J F Li*, et al. Preparation and galvanic black anodizing of a Mg-Li alloy. Materials Science and Engineering A. 2006, 433: 233–240

[12] Li Jin-feng*, et al. Study on localized corrosion mechanism of 2´´´ series Al alloy containing S(Al2CuMg) and q?(Al2Cu) precipitates in 4.0% NaCl solution at pH6.1. Materials Chemistry and Physics. 2005, 91(2~3):325~329

[11] Jin-Feng Li*, et al. Effect of compressive stress aging on transformation strain and microstructure of Ni-rich TiNi alloy. Materials Science and Engineering A. 2009, 523:207~213

[10] Jin-feng Li*, et al. Application of shape memory alloy TiNi in low-thermal-expansion copper composites. Materials and Design. 2009, 30: 314~318

[9] J. F. Li*, et al. Influence of Retrogression Temperature and Time on the Mechanical Properties and Exfoliation Corrosion Behavior of Aluminium Alloy AA7150. Materials Characterization. 2009, 60:1334~1341

[8] J. F. Li*, et al. Exfoliation corrosion and electrochemical impedance spectroscopy of an Al-Li alloy in EXCO solution. Materials and Corrosion. 2007, 58(4):273~279

[7] J F Li*, et al. Study on localized corrosion mechanism of 2195 Al-Li alloy in 4.0% NaCl solution (pH6.5) using a three-electrode coupling system. Materials and Corrosion. 2005, 56(3):192~196

[6] J. F. Li*, Z. Q. Jia, C. X. Li, N. Birbilis, C. Cai. Exfoliation corrosion of 7150 Al alloy with various tempers and its electrochemical impedance spectroscopy in EXCO solution. Materials and Corrosion. 2009, 60(6):407~414

[5] J F Li*, et al. EIS during corrosion process of 8090 Al-Li alloy in EXCO solution. Acta Metallurgic Sinica (English Letters). 2004, 17(6):894~901

[4] Li Jing-feng*, et al. Electrodeposition behavior of nanocrystalline CoNiFe soft magnetic thin film. Trans Nonferrous Met Soc. China 2006, 16(3): 659-665

[3] Li Jin-feng*, et al. Corrosion behavior of 2195 and 1420 Al-Li alloys in neutral 3.5% NaCl solution under tensile stress. Trans Nonferrous Met Soc China 2006, 16(5):1171~1177

[2] Li Jin-feng*, et al. Simulation study on function mechanism of T1(Al2CuLi) in localized corrosion of Al-Cu-Li alloy. Trans Nonferrous Met Soc China. 2006, 16(6): 1268~1273

[1] Li Jin-feng*, et al. Trans. Nonferrous Met. Soc. China. Mechanical Properties, Corrosion Behaviors and Microstructures of 7075 Aluminium Alloy with Various Aging Treatments. Trans. Nonferrous Met. Soc. China. 2008, 18(4):755~762